Skip to main content

Top down approach in Data Warehouse

Top-Down Approach

Also referred as “Big-Bang” approach.

There are certain similarities and differences among these 4 data warehouse approaches. This is especially true of the “top-down” and “bottom-up” approaches. The “top-down” and “bottom-up” approaches have existed the longest and occupy the polar ends of the development spectrum.

The two most influential approaches are championed by industry heavyweights Bill Inmon and Ralph Kimball, both prolific authors and consultants in the data warehousing field.

Inmon, who is credited with coining the term “data warehousing” in the early 1990s, advocates a top-down approach, in which companies first build a data warehouse followed by data marts.

Kimball’s approach, on the other hand, is often called bottom-up because it starts and ends with data marts, negating the need for a physical data warehouse altogether.


Top down approach in Data Warehouse
Top down approach in Data Warehouse


In the top-down approach, the data warehouse holds atomic or transaction data that is extracted from one or more source systems and integrated within a normalized, enterprise data model. From there, the data is summarized, dimensional, and distributed to one or more “dependent” data marts. These data marts are “dependent” because they derive all their data from a centralized data warehouse.

Sometimes, organizations supplement the data warehouse with a staging area to collect and store source system data before it can be moved and integrated within the data warehouse. A separate staging area is particularly useful if there are numerous source systems, large volumes of data, or small batch windows with which to extract data from source systems.

The major benefit of a “top-down” approach is that it provides an integrated, flexible architecture to support downstream analytic data structures. First, this means the data warehouse provides a departure point for all data marts, enforcing consistency and standardization so that organizations can achieve a single version of the truth.

Second, the atomic data in the warehouse lets organizations re-purpose that data in any number of ways to meet new and unexpected business needs. For example, a data warehouse can be used to create rich data sets for statisticians, deliver operational reports, or support operational data stores (ODS) and analytic applications. Moreover, users can query the data warehouse if they need cross-functional or enterprise views of the data.

On the downside, a top-down approach may take longer and cost more to deploy than other approaches, especially in the initial increments. This is because organizations must create a reasonably detailed enterprise data model as well as the physical infrastructure to house the staging area, data warehouse, and the marts before deploying their applications or reports. (Of course, depending on the size of an implementation, organizations can deploy all three “tiers” within a single database.) This initial delay may cause some groups with their own IT budgets to build their own analytic applications. Also, it may not be intuitive or seamless for end users to drill through from a data mart to a data warehouse to find the details behind the summary data in their reports.


Top down approach in Data Warehouse
Top down approach in Data Warehouse



Comments

Popular posts from this blog

Contact Me

Do You have any queries ?                   If you are having any query or wishing to get any type of help related Datawarehouse, OBIEE, OBIA, OAC then please e-email on below. I will reply to your email within 24 hrs. If I didn’t reply to you within 24 Hrs., Please be patience, I must be busy in some work. kashif7222@gmail.com

Top 130 SQL Interview Questions And Answers

1. Display the dept information from department table.   Select   *   from   dept; 2. Display the details of all employees   Select * from emp; 3. Display the name and job for all employees    Select ename ,job from emp; 4. Display name and salary for all employees.   Select ename   , sal   from emp;   5. Display employee number and total salary   for each employee. Select empno, sal+comm from emp; 6. Display employee name and annual salary for all employees.   Select empno,empname,12*sal+nvl(comm,0) annualsal from emp; 7. Display the names of all employees who are working in department number 10   Select ename from emp where deptno=10; 8. Display the names of all employees working as   clerks and drawing a salary more than 3000   Select ename from emp where job=’clerk’and sal>3000; 9. Display employee number and names for employees who earn commission   Select empno,ename from emp where comm is not null and comm>0. 10

Informatica sample project

Informatica sample project - 1 CareFirst – Blue Cross Blue Shield, Maryland (April 2009 – Current) Senior ETL Developer/Lead Model Office DWH Implementation (April 2009 – Current) CareFirst Blue Cross Blue Shield is one of the leading health care insurance provided in Atlantic region of United States covering Maryland, Delaware and Washington DC. Model Office project was built to create data warehouse for multiple subject areas including Members, Claims, and Revenue etc. The project was to provide data into EDM and to third party vendor (Verisk) to develop cubes based on data provided into EDM. I was responsible for analyzing source systems data, designing and developing ETL mappings. I was also responsible for coordinating testing with analysts and users. Responsibilities: ·          Interacted with Data Modelers and Business Analysts to understand the requirements and the impact of the ETL on the business. ·          Understood the requirement and develope